Contact:
sales@biotechnologyforums.com to feature here

Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5
Genetically modified plants and their application
#1
Photo 
Ever since the beginning of the plant breeding, man was altering plants to ensure high production and best quality of the harvest. At the beginning, selective and cross-breeding were methods used, but for the last couple of decades man is using more sophisticated methods while designing the plants with all characteristics needed. Genetic engineering became popular in no time and genetically modified plants start sprouting all over that planet.

First experiments were focused on development of the plants resistant to pesticides, to prolong ripening time (tomato), to improve oil composition (canola) and by the 1996 - 8 transgenic plants were approved for cultivation. At the beginning of the 2000, one plant was modified for the first time to increase its nutritional value (golden rise).

Methods used for modification of the plant genome are relatively simple: either Agrobacterium tumefaciens or biolistic gun could be used. In the first case, A. tumefaciens will act as a vector, carrying and incorporating genes of interest in the plant’s genome. This method is useful for dicotyledonous plants like tomato and tobacco. Biolistic method uses DNA sequence attached to the gold or tungsten particles that are shoot into plant cell or tissue using high pressure. After penetrate the cell, DNA is released from the metal particle and start incorporates into the genome. Main disadvantage of this method is mechanical damage inflicted to the cells. However, this method is useful for plants that can’t be easily transfected with A. tumefaciens, like wheat or maize.

Plants could carry genes that will enable them to produce antigens for vaccinations, bacterial toxins or enzyme that will be used for therapeutic purposes. Carrot producing Taliglucerase alfa is used for Gaucher’s Disease treatment; banana producing vaccine against Hepatitis B virus is developed but not marketed; tobacco deriving therapeutic antibodies are under investigation…

Droughts, low temperatures, lack of nutrients are stressful environmental conditions that could negatively affect plant development. Plant could be modified to increase tolerance and survive drastic weather changes.
Herbicides are strong chemicals used to eliminate weed, allowing plant of interest to grow smoothly. Weed could become resistant to an herbicide over time, and genetic engineering is used to create a plant carrying more than one herbicide resistance gene that will allow regular spraying of the crop with multiple herbicides.

Insects and viruses could produce serious damage on the plants. Bacillus thuringiensis derived genes are incorporated into plant’s genome to ensure resistance against insects. Papaya production was dramatically reduced when ringspot virus starts spreading. Genetic modification solved the problem, and it’s still only solution against ringspot virus.
Golden rice is first genetically modified plant with increased nutritional value. Over 650 000 children under the age of 5 are dying each year due to vitamin A deficiency. Designing the rise enriched in beta-carotene gene with resulting high provitamin A level offered solution to the most affected areas. It’s not marketed yet.

Genetic engineering of the plants is useful way of producing biofuels. Algae are well known source of biomass that could be used for the biofuel production. Genetically modified maize that is accelerating ethanol production by converting its own starch into sugar is next promising candidate for biofuel production.

Pollution of the planet is one of the most important issues that mankind is facing today. Every solution that could help preserve environment or help reduce amount of existing waste is more than welcome. Genetically modified crop could be used in bioplastic development. Transgenic plants carrying bacterial genes are cleaning up environment from pollutants like mercury, selenium, PCBs…using bacterial enzymes that are digesting contaminants from the soil.

Genetically modified crops are hundred billion dollars worth business. A lot of people and steps are involved in crop development: from scientist that are experimenting with the plants, companies that are producing the seed, chemical industries developing herbicide and pesticide all the way to the farmers that are cultivating the plant…In 2010, 15 million farmers in 29 countries worldwide were growing genetically modified crops. Over 80% of cultivated corn, cotton and soya in the USA are genetically modified. Beside USA, Brasil, Argentina and India are the largest manufacturers of the genetically modified crops.

What plant will be modified, cultivated, used as a food source…depend on the country and the laws associated with genetically modified organisms. Europe has more strict legislation than USA for example, but still it produces GM crop as well. A lot of people are concerned how this food will affect their health and “health” of surrounding ecosystem. I’m concerned as well, but unfortunately most of us can’t cultivate organic plants and stay healthy for a longer period of time. I know that this is not way too comforting, but what doesn't kill you makes you stronger. To make things worse - I'm vegetarian Wink
Like Post Reply
#2
Great write up about genetically modified plants. They have been have made a big splash in the news lately. European environmental organizations and public interest groups have been actively protesting against GM foods for months. Environmental activists, religious organizations, public interest groups, professional associations and other scientists and government officials have all raised concerns about GM foods, and criticized agribusiness for pursuing profit without concern for potential hazards, and the government for failing to exercise adequate regulatory oversight. Some of their main concerns in the society are:

Environmental hazards

Unintended harm to other organisms. Last year a laboratory study was published in Nature showing that pollen from B.t. corn caused high mortality rates in monarch butterfly caterpillars. Monarch caterpillars consume milkweed plants, not corn, but the fear is that if pollen from B.t. corn is blown by the wind onto milkweed plants in neighboring fields, the caterpillars could eat the pollen and perish. Although the Nature study was not conducted under natural field conditions, the results seemed to support this viewpoint. Unfortunately, B.t. toxins kill many species of insect larvae indiscriminately; it is not possible to design a B.t. toxin that would only kill crop-damaging pests and remain harmless to all other insects. This study is being reexamined by the USDA, the U.S. Environmental Protection Agency (EPA) and other non-government research groups, and preliminary data from new studies suggests that the original study may have been flawed. This topic is the subject of acrimonious debate, and both sides of the argument are defending their data vigorously. Currently, there is no agreement about the results of these studies, and the potential risk of harm to non-target organisms will need to be evaluated further.

Gene transfer to non-target species

Another concern is that crop plants engineered for herbicide tolerance and weeds will cross-breed, resulting in the transfer of the herbicide resistance genes from the crops into the weeds. These "superweeds" would then be herbicide tolerant as well. Other introduced genes may cross over into non-modified crops planted next to GM crops.

Human health risks

Allergenicity: Many children in the US and Europe have developed life-threatening allergies to peanuts and other foods. There is a possibility that introducing a gene into a plant may create a new allergen or cause an allergic reaction in susceptible individuals. A proposal to incorporate a gene from Brazil nuts into soybeans was abandoned because of the fear of causing unexpected allergic reactions.

Unknown effects on human health: There is a growing concern that introducing foreign genes into food plants may have an unexpected and negative impact on human health.

Economic concerns

Bringing a GM food to market is a lengthy and costly process, and of course agri-biotech companies wish to ensure a profitable return on their investment. Many new plant genetic engineering technologies and GM plants have been patented, and patent infringement is a big concern of agribusiness. Yet consumer advocates are worried that patenting these new plant varieties will raise the price of seeds so high that small farmers and third world countries will not be able to afford seeds for GM crops, thus widening the gap between the wealthy and the poor.

In conclusion, genetically-modified foods have the potential to solve many of the world's hunger and malnutrition problems, and to help protect and preserve the environment by increasing yield and reducing reliance upon chemical pesticides and herbicides. Yet there are many challenges ahead for governments, especially in the areas of safety testing, regulation, international policy and food labeling. Many people feel that genetic engineering is the inevitable wave of the future and that we cannot afford to ignore a technology that has such enormous potential benefits. However, we must proceed with caution to avoid causing unintended harm to human health and the environment as a result of our enthusiasm for this powerful technology.
Like Post Reply
#3
I have heard a lot about genetic modification of plants. But I always feel that is it safe to grow plants this way. I hope no more chemicals are involved in this process.
agence immobilière royan
Like Post Reply
  

Possibly Related Threads…
Thread
Author
  /  
Last Post



Users browsing this thread:
1 Guest(s)

Genetically modified plants and their application00